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Estimates of critical distances, up to Vinich due!,, aerosols, and
(toxcic) fumnes may be driven~, under t-he influence of various wind and
diffuasivity conditions, require thAat three-dimensional golutions to the
probleni of wind-driven con taninalrton be derived, for application to
range safety problems. The so called "conservative," two-dimensional
solutions-(which might be of 9cme value in certain meteorological
Rituat~ions), are in general, by orders of magnitude, too large to be of
practical value (see ?art III, page 5). After all, nature is three
dimensional; this feature determines the rate at which the concentration
falls off in the downwind direction.

In part III, analytic solutions for const.3nt wind and constant
diffusivity have been derived. By using the uiethcd of separation of
variables, the three-dimensional concentratic-n functiorns resulting from
two-dimensional. as well as three-dimensional cources are deduced. In
either case, the intensity q(x, 0)* falls off with the first power of the
downwind distance x, as expetted; but thu strength factor, which depenkds
on the dimensions of the source in the x-, y-, and z-directions, offers
some new insight (see figure 1). Even in three dimensions, the resulting
critical distances are too large to be useful, so long as the assumption
of constant UJ aae K is retained (see part III, page 5).

In part tIV, three-dimensional analytic solutions hwve been derived,
under the assumption that wind speed U and eddy diffusivity K vary,
either in accordance with the conjugatta porwer laws, or in a -more general
fashion. The results, following therelrom, can be made to agree with
published observational data; In particular with the general observation
that the 'rate of decline of concentration with the downwind distance x
and crosswirid distance yr along the ground surface obey a certain power
lawl.

In section one of part WV, a new method of solution is ugso
whiczh may be used for solving diffuaio2 problema of a more gener#l
nature: a "tmethod of superpooition of parabolic sources, xizka, etc."

In the remainder, five particular, three-dimnxional parabotic
,iource solutions have been derived.

The five mentioned solutions are characteriz~ed by:

1 I 6
1.) 725

lY"Uz 18saz m ~ r

6 6 6

2.) U m~U - .Y,

3.) U z 1ý7 a z .M 3
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S5.) U , a Ez y, b z, p-

Ky and- 4_,are the. dif fusivities in the y- and z-dir~ctions. p is the
exponenx. which indicates the rate of decline of cont,;entratiovk, with
dow•rind distance x. The examples are ordered after Increasing p.
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PART III

THE CASE OF CONSTANT WIND VEMOCI'1Y
AND CONSTANT DIFFUSIVITY

Th?"EE-DIMENSIONAL DIFFUSION FOR A TWO-DIM[ENSIONAL SOURCE

In part I, the writer has derived an analytic solution of the
problem of diffusion of wind-driven .entamination, in two dimensions;
wind velocity and diffusivity wcre assumed to be constant. In part III,
an analytic solution of the analogous problem in three dimensions will
be derived.

As in figure 1-1 of part I, the wind velocity U is ir. the direction
x, and the source is located in the y-z plane (x - 0) and may extend
between 0 < z < m, < m_ y < 4- in. (Later on, we shall sssume a three-
dimensional source.) We desire the three-dimensional d:Lstribution of
the concentration, q(x; y, z), which hat to satisfy the differential
equation:

>2-

2)x U Dy2  3z2

Again, we stipulate the boundary conditions:

q - qo (y, z) = I for -. < z < + 1. and - m < y <+ m
(2)

= 0 outside of this rectangle in the y-z plane

The symmetrical fortm of equation (2), about: the x-y plane, guarantees
that the second boundaty condition;

K 0, for z = 0, any x, any y (3)Dz

will be fulfilled, whizh signifies the impenetrability of the ground
surface.

* ... . .. ..- :• •-- • -- -.
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Fignre 1. Location cf Two-Dimensional Source.

We assume a solution

q(x; y, z) = ql (x, y) q 2 (x, z) (4)

then

2qI 4q K a4 2ql Z22

q2U I"+ q2 q

Hence

Dqj K- . ;y--•-= _1- K a •q22 2q _ K~ '6lY q2 __ KU2
U x a z

If we st C = 0, then

q_ = , and Kq2 K aq 2 (5
ax U by" Dx U DZ2 (5)

Thus, the form of ql and q2 is as in two dimensions; as a consequence,
not only differential equations (1), but also boundary conditions (2)
and (3) are fulfilled.

4
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Theo oniie-tr.r nf the prohlem can be written in the form

+4 +M

q(x; y, z) U 4d d -exp U " 1

u 2 - Ji ~ TL 2  -

+M ((6)

5 U
\47 K " I- ' x 4-K x

Evaluating either factor of equation (6) as in part I, we get

q (X; y, z) _. (Ul) + 1 (112)] g+ (WlO + I (W2) (7)

Here

u (2 2( 4 K.- x (I - -K

By using the first term in the asymptotic expansion of the error,-
integral, we may write; in the vicinity of che x-axis, and for(• <:

1i - 2 u I + • 2 fu I--+

\•V (9)



"T. q .k-. " ' " •K/ -i0

Im

and for 2 i-m:

-- ' •\ U I I area U I
7 0 K x r K x (!0a)

The concentration at a given distance x, is proportional to the area of
the source and the strength of the wind but inverse to the diffusivity K.
which diffuses the contamination in the y- and z-directions.

APPLICATION TO RMNGE SAFETY CONDITIONS

Let us assume 'hat the critical contamination value qcr is considered
to be I per cent of the "initial" contamination qo = 1, at the source.
We would like to know, at what distance, Xcr, the value qcr is reqched,
particularly downwind on the ground. Depending on, whether we use the
two- or three-dimensional model, we get:

(a) Strip source:

q (.:w " (Vj} = 0.01 (11)

(b) Area source:

h "K 0.01(a)
q, 15 '" xo that ;K-- 1. 0

Th'- data given to us, were • 30 m 15 m', s th 10'.

In contrast to this two-dimensional result, we compare the result,
obtained in three dimensions; equalizing equations (II) and (lla)

U i 1 -

Xth

or

th I M

- (1

A



TI acctrding t the ahnve p assume - m 30. = 15 m, we get:
-K

(-I , - 1.2 103) 12.5

(i), 
/

The three-dimensional distance Is obtained, by taking the square root of
the two-dimensional distance, and in addition, multiplying with the
strength width in the y-direction (ratio of wind width and diffusivity).

THREE-DIMENSIONAL DIFFUSION FOR A THREE-DIMENSIONAL SOURCE

If the source has also an extension in the x-direction, - d<x<+ d,
(see figure 2) then, if we skip, for the present, the v-direction we get

2m 2C

21d4__ 

__ __ 

x

2d

Figure 2, Location of Three-Dimensional Source.

/ ~1 -d

\ X+O 4K x+e0 (13)

-i ! i

111 Lh

q \ f O'") d 0; (13a)2f.~I j H do

-d

Near the x-axis. andC. for iý<l we may set-

1 1

C-1 _+ -)f4



Set x + , then

I x+d11
=q • -_ _ 2. i [ + )--

Expanding the square roots into polynomial series, we have

8116q _2 d , II i + .I L2 + --- (16)
Smt\ 7wK/ -- 8 x2

To get consistent results, we have to use also the asymptotic
expansion of the error integral up to the second term:

I ( i I U"ui~
U rl-- UI - -'- 3 ' 01

so that, near the x-axis, and fpr q-• I:

[~ ~IE) +I1(2)I] ~ -41(~r- _f lUTU [-5-1 x L

Hence

+1 3

f 3(4)X + )( 7)
-d

Now, evaluating the integral, and observing that

(x + d) 2 -(x - d) x +

and

1 1

(x + d) 2 ( (x - d) - 7. - 1 " x

8
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we obtain finally:

11 3

2 d-()2 (12 1 J 2 (1)2 + +0y-
/77 .K/ x + -- + ) o (18)

The first term of the series indicates, that the source has gained
strength by a factor 2d. The second term takes into account that the
initial contamination is distributed in the x-direction (multipole effect).

Analogous results are obtained, if we add to equation (18) the

results obtained for the y-direction:

x K

9
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PART IV

WIND SPEED AND DIFFUSIVITY VARYING ACCORDING
TO THE CONJUGATE POWER LAWS

INTRODUCTION

In the following, the idealization that wind speed U and diffusivity
K are constant, will be discarded. Since it is well known that at the
eerth's (or ocean) surface the wind speed must decrease to zero,
ac-ording to the physical laws of viscuous flow, and, since the air in
the atmosphere is in turbulent motion, a natural assumption is that the
variation of wind speed with altitude obey the . power law of turbulent
flow, as derived by von Karman and confirmed in numerous laboratory
tests. At high altituaes, wind conditions will vary according to
orographic conditions, and finally there may be an inversion layer.
Such complicated conditior.s can be best dealt with by numerical integra-
tion of the differential equation, for which an example is given in
part II. Representative, simple conditions should be treated analyti-
cally, when possible. This is done in the .ubsequent part IV.

In marked contrast to the case of constant U and K, where we
obtained a range of concentration characterized by

-I

q (x, 0) a in two, and q(x, 0)-` )in three dimensions, we

shall now expect a decrease in q(x, 0) with higher negative powers of x.
In the case of constant U, the wind velocity at the ground is larger thani
zero, and hence, the emanating contamination is carried farther. For a
speed distribution following the . power law, the ground layer is dragged
by turbulent mixing with the upper layers, which are moving with
increasingly greater speeds. Therefore, the highest concentration is
close to the source but falls off more rapidly with distance downwind
than the concentration for the constant wind.

SUGGESTION OF A NEW METHOD OF SOLUTION

In part III, the writer has derived three-dimensional solutions to
the problem of wind-driven contamination, whereby it was assumed that
wind speed and diffusivity are constants. "The failure of these solu-
tions tc conform to the meteorological observations, produces unassail-
able evidence that eddy diffusion in the atmosphere cannot be represented
by the 'Fickian' equation," ki.e., the diftusion equation with constant
U and K). Quotation is taken from O.G.Sutton, Micro-meteorology,
page 138.

It is suggested that Schmnidt's conjugate power laws May Delmore

accurate. These laws assume tnat the wind speed varies as the I power
of a dimensionless altitude coordinate as it should in idealize-6
turbulent flow, and the diffusivities vary as the - power of the

7



altitude coordinate. In two dimensions, Sutton (page 281), gives a
simple closed form solution for these conditions and a source in the form
of a singularity in the x-z plane. This idealization of the source form
is a frequent artifice, used in several fields of physics, e.g., electro'-
dynamics and fluid dynamics, whereby the singular vicinity of the lource,
which produces the flow, is subsequently excluded along a streamline,
equipotential line, curve of constant contamination, or any appropriate
straight line, and only the exterior field is considered as real.

Furthermore, it is apparent that, if the governing equations are ltnear,
sums or integrals over such sources, can be added up, to give a composite
field, with the desired properties (boundaries).

This writer proposes that this "method of superposition of sources,
etc." be used to obtain the desired distribution of any given contamina-
tion field. 'ne may note that the sources of incompressible flow satisfy
the Laplace equation, which is elliptic. The "pseudo sources" of super-
sonic flow obey a hyperbolic equation (of the type of the wave equation).
Since our present sources obey the diffusion equation, they may be called
"parabolic or diffusion sources."

The prerequisite for such a procedure is that several parabolic
source solutions be known. It is the main objective in this part to
derive several elementary three-dimensional parabolic source solutions.
These solutions will answer the question about the distribution of
concentration, when the actual U and K variations are the assumed ones.
Beyond that, a superposition of such elementary solutions may enable us
in the future, to deal with problems of a more general nature.

I i
THE CONCENTRATION, UNDED. CONDITIONS IN WHICH U U z7 , Ky = a z7 ,

A.ND Kz = b z7

The problem of our three-dimensional singularity source can be
Lormulated as follows:

We are looking for a solution'of the parabolic differential equation

1 ( _Ix Q) (
Ux Dz *- - az (1

with the following boundary conditions:

K ! - 0, for z - 0, any x and any y (2)SZ2)

q , 0, as x, y, or z--
(3)

q-.- as, as x z y-40

fd z d Uy z7  q (x; y, z) Q, independent of x (4)

o Ye

12
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The last condition represents the conservation of mass flvw through any
plane x = constant.

For a two-dimensional singularity source, i.e., if in equation (I)
a is set equal to zero, a solutioDn has been stated by Sutton, page 281,
which is of the form:

C z7

q 2 (x, z) -' exp A 7 (5)
x9

It is readily verified by differentiation, that this solution with

49U
81 b

satisifies differential equation (1) and boundary conditions (2) and (3).
Condition (4) can be written, for two dimensions only, as:

exp -dz- 8 exp -
(6)

0 x9 - 0 X9

and if _8

andif = v, M2 -, fd v exp (-A -8) , for any fixed x.

x9  0

We seo from the above, that M2 is independent of v and x, i.e., the
diffusing mass flow is constant.

Sutton's above two-dimensional diffusion source is capable of
generalization to three dimensions, in several ways. To prove this,
let us now consider the cmpieite differential equation (1) and complete
conservation equation (4).

Generalizing "Ansatz" (5), set

= C exp A . ,-m- - B •(7)

whereby the coefficients p, m, and n will be so determined, that they
satisfy the differential equation and boundary conditions.

Inserting equation (7) into equation (1), we obtain:

13
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1n
S•z7 -U Z7_ P + A C7 z' + B C... + +

.z xp+lY xP+2

ex -A - - B~~ (8)
azexp A - n (+)

a- 7 a a z B n (n-1) •n- + xP•C 2" ý2n-2

DY2• zm~ xp•

eAp [A •x - B (9)

7 = b A - C m + oexp A
bz z -XP+. x

D_ 6 bq A CX m -6T

1 + . zm-2 (
3z azi

b A2- C 2 m-2 -exp A --K -S
+ • m • zL X x (10)

Next we have to determine the exponents in equations (8), (9), and

(10), so that they match. After this, we shall match the coefficients of

equal powers in z, y, and x.

Fquation (8) contains terms with the following powers:

1 1 -m1

z7 /xp+i; z7 /xP+ 2 ; z7 . yn /xP+ 2

Equation (9) containsterms with the following powers:

I I
yn-2 J z7 /xP+; z7 y 2n-2 /xp+2

Equation (10) contains terms with the following powers:

6 6
Szm_ 2+7 /xP+l; z2m-2+7 /xp+ 2 9

We see that all exponents match, if we set n a 2; and m = L, as in two

d 43nens ions.

14



Then:

Equation (8) contains the pmwers

1 10 i

z 7 /xP+!; zj /xP+ 2 ; y 2 z7 /xP+2

Equation (9) contains the powers

1 1

z7 /xp-[; y2 z7 /xp+ 2

Equation (10) contains the powers

1 10

z7 /xP+I; z7 /xP+ 2

As we Fee, p remains open.

Since we have now matched all the exponents, we compare the
coefficients of equal powers, which provides fto following four equations:

I

i ~p U a -a B 2 - b A 7 " (I!)

I

z7 * 1y2 Z 4

xp+2 • = a B ] (L2)

I0
7 F = b Al ] (13)

To this add the information that in two dimensions, if a B = 0, we know
that p = Po -8 so that we have

9

8 - b A *'72
9 49 (14)

Now subtractirg equation (14) from equation (11) and setting p- +
we get

- P 1 U a B -2 (Ii) - (14)

U = a B 4 (12)

1. 25which yields P 1 7  and p = po + pl (15)

It is noteworthy that equation (15) holds true for any values U, a, b.

15



Actually, these values are determined by the altitude variations of
wind and diffusivity. In lieu of observational data, we set a - b - U,
and obtain:

8 = A 7L2 (14a)
9 49

1 w 4B (12a)

I -- • A (13a)
49

Equations (13a) and (14a) give the same A value, and equation (12a) gives
BI

Therefore, the three-dimensional distribution of contamination, for
the indicated variations of U and K, which are in agreement with the
physical .aws (of turbulence) and with observational data, assumes the
following simple form:

r 9
C 4-9 z7 1

q (x; y, z) =25 . exp _ 9 z 1

x18 L 81 x 4 (16)

This is the contamination issuing frow. one elementary "parabolic source,"
mentioned earlier.

It is obvious that solution (16) fulfills not only differential
eqution (I), but also conditions (2) and (3). But we still have tc
show that it fulfills the condition of conservation of mass flow for
three dimensions (4). We can write (4), after separating p into
Po P:

1 2

M exp -A - dz exp B dy Q

9 - -x (17)

"No;7, it has been shown, befote, that the first factor is independent of
x and constant; it remains to show that the second factor is also

¶ independent of x.

16

...

.- >,• / "---5" .



We see that

Srr113 - 2 dexp jB5 -\ (18)

xx!
Setting ~rr

7:7

M3 = M2 dr • e -B r 2  = 12 (•V )• q .e .d , (19)

The diffusing mass flow M3 is the same at any plane x = c, also in three
d imens ions. 

6

"MhE SPREAD OF CONTAMINATION q (x; y,z), FOR U U - z7,

6 6
Ky = a. ZJ, Kz = b • z7

Another chree-dimensional singularity source, which has been
suggested as representing actual meteorological conditions, is the one
indicated above, so that we have:

6 _ 6
ýLa= (ay .z ay'

Setting as before:

q= C exp -A B - Z C - exp -L (x,y,z)q p x- x xP

we get this time:
U. ' z 7x = U z. -L ' ' m ' n

A. xp' + xP j xp-L (x,y,z)~
6 6 [

27.BaC 
Bz n2a. y

7

n- 
n(n-l) • lyn2 + xPn

exp [-L (x,yzz)1

3. a"z7 • [ b7 xCPl + - z n-2 + B•-tCn2 z( "2n-2

•exp [-L(xY,z)4

exp -xyz

17



6 6 6

1. Contailis the powers zT /xP+!; z7'"'/xp42; z76 ynlxP+ 2

6 6
2. Contains the pmers z 7 /xp+l; z7 • y2n-2/xP+2

6

3. Contains the powers z(m-2 )+7/!xP+I; z( 2m-2 )+7!xP+2

All powers will be matched, if we take n =_,m m = 2, and leave p open,
at first.

By comparing the coefficients of equal powers we get the equations:

6z7 U U p a* B 2-b A 2 13xpzl- 7 I

62
X U = b A -4 (it)

6. 2
z7..p U = a B 4 (II4)

In two dimensions, where a = B = 0, we get

U" po = b A 26(IV)
7

U = b A •4 (lX'

Hence:

26 P= 1 for any U and b value.4P =-'' Po 14'

Set again, p po and pl, then

-U P1  -a B . 2 (I)- (IV)

U = a B •4 (Iii)

1 2 p, again.

If now we set U = b - a, then

B-- A I
4' 4

18
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THE CASE: U U z; 1 - a z, Kz b • z

z U z P C + A C.. , exp L (XyA

2. a z aB'C n(n-lz yn-2 + B2"C n 2hi21

I X17

exp Tz (:xp--.ex 
(y

3. Co ta n the o 2; C nm22 •y3. bA-72m eA L (x~~

1. Contains the powers z/xPj; z z P+2

2. Contains the pc-qers z -yn-2/ p+l; z ~2n-2,! ,

3. Contains the powers zm-il/xP+!; zim-1i xp+2

We can match the powers, if we set m = 2 and n - 2, for three dimensions.
For the special, Lvo-dimenslonal case we set a - B , 0 and n = 0. Then

-U • p0 = - b A - 4

U-bA 4

Therefore p. 1 with n -- 0, m = 2. For three dimensions

-U p!= - a B *2; U = b A • 4; U = a B - 4

Hence 4p, - 2. and p1  1, again.
2

The addition of the third dimension, appears always to increase the
negative power of x by one half, so long as the cross-wind distribution
of q, i.e., Ky is not made to depend on y.

THE CASE: U (z) = U z; y a z - y; K = b - z

The meteorological data seem to require that the fall-off of
concentration in the dow-xvind direction i- somewhere between x-' and
x-1.5, Since the preceding cases seem to indicate that any z-dependence
of Ky does not lead beyond p - 1.5, we try to gain new insight, by making
II =a z y.

19



While equations (i) and (3) of case 5 remain the same, we have no
to replace equation (2) by

[fa z .y . j a z .a + a z -y a

ayZy C)y (2a)

With the general assumed form (7)

q3 -xi exp - L (x,y,z) (7)

we have no:

ya )- - +ŽC''yn B2 "C-n2 'y2n-by Dy ] = - z xP+l + xP+2

B'rC'n(n-l)'yn-ll
- .- -xp~ i .... .- exp - L (x , y z

xpFIa z 'LC___2_B 2 "Cn 2 y2n-l11

• exp [_ L (xyzj

Therefore the terms (1), (2a), and (3) of our differential equation

contain the following poers of x,y, and z:

1. z/xP+I; zm+I/xP+2; z • yn/xp2

2a. z yn-!/xP+l; z y2n-I/xP+2

3. zm-llxP+I; z 2in-I/xP+2

We see that we can match all powers by setting n - 1, m =2. First,
solve the two-dimensional case, by setting a = B - 0, m = 2. Then,
as in case 5

- U ' po = b A - 4; U = b A - 4. Hence P0 = 1, again.

For three dimensions:

-U p - a B 1 - b A 4; U= b A ' 4; U - a B i

Hence p - p0  Pl + I and p = 2. The fall-off of q(x,0) is propor-
tional to x°-.

I
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THE CASE: U(z) U z; Ky= a z y2; K b b z
I

Since the fall-off in case 6 was too large, we try K y a • z y 2 .

Again the terms (1) and (3) remain the same as in cases 5 and 6. But
term (2) must be replaced by the following:

az 2 a .y 3y (2b)

Substituting expression (7) for q, we get:

I_1 - _ ,Cny-
1 a q = - a z y 2 .exp L (xyz
2 ay 2 - xp+e

+ a z y a z y2 B_.cn _ BC n Hn-tL•In-2
xP+2 xp+ !

Hence:

(2b) = IP i + nxP + +2- / n -2 exp T- (x,y~z

The terms (1), (2b), and (3) of our differential equation contain the

following powers of x,y, and z:

I. z/xP+1 ; zm+l/xP+2, z yn/xp+2

2b. z - /xP+l; z yn- P+2

3. z-I/xP+l; z 2 m-li/xP+ 2

All terms can be matched, if we take m = 2, n 3. From the two-

dimensional case, (a = B = 0), we get as before:

Po = !

For three dimensions, we get the equations:
3 9

3_B- 4- b A • 4; U b A 4; U= a B •

Subtracting from the first equation: -U po = - b A-- 4, we obtain now

P- =P 2 =2 so that p = 1.66

This fall-off of q(x,O) seems to agree fairly well with the observational
data.

if necessary, new parabolic source solutions can be readily

generated.
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CONCLUSIONS

We have shown that, depending on the variation of the diffusivities
K - and K with the a.titude coordinate z and crosswind coordinate y, the
rate of decline of concentration q, with downwind distance, xP may
follow any power law between p - 1.5 and p - 2.0. In the crosswind
direction, a Gaussiý.n distribution results. This general behavior of
the distribution of concentration, at ground level, is well substantiated
by observations in all kinds of flat lands, as reported in the literature.
An empirical exponent which is favored is p - 1.75*.

* Pasquil, F. Atmospheric Diffusion, London, Van Nostrand, Ltd.,
1962. Page 83.
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